Generalization of Pythagorean Triplets, Quadruple
نویسندگان
چکیده
منابع مشابه
Some Results concerning Pythagorean Triplets
By using a computer program devised by M. Creutz, we were able to determine all Pythagoeran triplets for which z ^ 300. At this point, a distinction must must be made between P-triplets for which x9 y9 and z have no common divisor [the so-called "primitive solutions" of (1)] and P-triplets which are related to the primitive solutions by multiplication by a common integer factor k. So, if Xi9y^9...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Pythagorean Generalization of Testing the Equality of Two Symmetric Positive Definite Matrices
We provide a new test for equality of two symmetric positive-definite matrices that leads to a convenient mechanism for testing specification using the information matrix equality and the sandwich asymptotic covariance matrix of the GMM estimator. The test relies on a new characterization of equality between two k dimensional symmetric positive-definite matrices A and B: the traces of AB−1 and ...
متن کاملTriplets
occurrence that the newspapers featured the event as "news." Keporters besieged both the home and school, with the result that the triplets found themselves in headlines, with their pictures and history on the front pages. In the school itself they received due recognition. Mere twins were ignored. Teachers journeyed from their several class-rooms to gaze upon "the triplets." Little children cr...
متن کاملPythagorean Triples
Let n be a number. We say that n is square if and only if: (Def. 3) There exists m such that n = m2. Let us note that every number which is square is also natural. Let n be a natural number. Note that n2 is square. Let us observe that there exists a natural number which is even and square. Let us observe that there exists a natural number which is odd and square. Let us mention that there exist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Bulletin of Society for Mathematical Services and Standards
سال: 2012
ISSN: 2277-8020
DOI: 10.18052/www.scipress.com/bsmass.1.40